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The Statistics of Dimers on a Three-Dimensional 
Lattice. II. An Improved Lower Bound 
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The model proposed in the previous paper is used to improve the Hammersley 
lower bound for three-dimensional dimer problem. 
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1. INTRODUCTION 

In the previous paper, (t) hereafter referred to as I, we dealt with the 
number of ways of dissecting an N-brick (with sides of length l 1 , l 2,/3) into 
dimers. We have considered dissections that do not generate any closed 
path on the set of points with only even (A 0 sublattice) or only odd (B 0 
sublattice) coordinates. It was found that the number of such dissections is 

rP~v=exp l ~--o ~ ~ In 4 S ~ s i n |  - , . . .  
a a2=0 a3=0 j = l  \ ~] 

The dissections considered can be found among all the possible 
dissections of an N-brick; therefore, the following inequality is true for the 
number of arbitrary dissections: 

WN ~> r 
For the limiting value 

) t= lim ( l / N ) l n ~ p N  
N---~ c~ 

we have the bound 

[ ./~__3 1 sin2aj ] x>~x'=~fff&la~2a,~31n 4 (1) 
0 

which coincides with the lower bound obtained by Hammersley. (2) 
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In this paper we improve the lower bound in (1). To this end in Section 
2 we consider a class of dissections of an N-brick, which generate at least 
one closed path. Their contribution to ~N can be evaluated by using 
correlation functions of the exact solvable model considered in I (model I). 
In Section 3 a general expression for the correlation functions is derived. 
Numerical results for these functions and the improved lower bound for ?~ 
are presented in Section 4. 

2. A CLASS OF FORBIDDEN CONFIGURATIONS 

It will be convenient to use below the following equivalent formulation 
of the dimer problem. An N-brick is the union of N unit cubes. Define, as 
in I, a lattice L with sites in the centers of the cubes and with edges 
connecting the nearest sites. Every dissection of the N-brick into dimers 
corresponds to a dissection of the lattice L into nonintersecting pairs of 
adjacent sites. Here a dimer is an edge together with the pair of sites 
incident to it. 

Let C be an arbitrary dissection obeying the rules of the model I. A 
closed nonintersecting line composed of the lattice edges, one half of which 
are dimers, will be called a contour. If X l , X  2 . . . . .  x n are the lattice sites 
belonging to the contour and (X1X2),(X3X4) . . . . .  (X n_ l xn)  are the dimers, 
then by the "shift" of these dimers along the contour we will understand 
their substitution by dimers (X2X3) , (X4X5) . . . . .  (XnXI). The shift of dimers 
along any contour leads to a dissection C'  different from C. It may turn 
out that C '  generates closed paths on the sublattices of L. 

In fact, consider two configurations of seven dimers ~21 and ~2 2 (Fig. 1). 
The dimers a, b, c and dotted edges form a contour. The dissections 
containing fll and generating no closed path transform into dissections with 
the closed path on the sites 1,2,3,4 under the shift of dimers a , b , c  along 
the contour. 

Fig. 1. 
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Let P(nl) be the probability that in a given dissection one can find n 1 
configurations of the type ~21 . The shifts of dimers along each of contours 
contained in these configurations produce dissections absent from the qO~v 
dissections obeying the conditions of model I. Hence, using also convexity 
of the exponential we have 

i n 1 rPu /> ~u~'] 2 P(nl)  /> fp~v 2n' (2) 
n l  

where nl = ~.,,,,nlP(nO = (f~l)N/8,  N/8 is the number of sublattice sites. 
Here we introduced the correlation function (f~l) defined as the ratio of the 
number of dissections that contain ~1 in a given sublattice site to the total 
number of dissections obeying the conditions of model I. 

To improve the bound in (2), consider additionally configurations of 
the type f~2 (Fig. 1) and note that the dimer d in f~l, f~2 can occupy five 
different positions. For a fixed position of the dimer d there exist 8 ways to 
arrange the dimer b and dimers on the sites 1, 2, 3, 4 to obtain a configura- 
tion of the type f~. To each indicated configuration there corresponds a 
configuration reflected with respect to the square 1234, which can be also 
oriented in three directions. The number of configurations under consider- 
ation should be doubled because of symmetry with respect to the replace- 
ment of sublattice A o by sublattice B 0. We get 96 configurations of each 
type ~2~ where 8 labels the five positions of the dimer d and i = 1, 2. 

Note that contours in different configurations can possess common 
dimers and no shift can thus be made along every contour independently. 
To determine the number of possible shifts, w e  ascribe to each contour 
from the set of f~/-type configurations a point of a graph G. If two contours 
have common dimers, the two corresponding points of G are connected by 
an arc. 

It can easily be verified by construction that every dimer belongs at 
most to two contours. So, the number of arcs emerging from each point of 
G does not exceed 3. Let i be an arbitrary point of G. We may imagine i to 
be colored black if one shifts dimers along the contour, corresponding to i, 
and white otherwise. Then, the number of possible shifts in the set of 
contours equals the number of ways in which points of G (deg i < 3 for all 
i ~ G) can be colored with two colors such that adjacent points have never 
the black color. 

The needed number can be bounded above by the series 

9~(% - 4) 9L(% - 4)(% - 8) . .  = 5%/4 
1 + 9 ~ +  + + �9 

2~ 3! 

where % is the number of points of the graph G. 
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U -::.g / 
{o) (b)  (c) 

Fig. 2. 

Taking into account the obvious identity (~2~) = ( f~)  we have 
5 

% = 24N ~ ( ~ )  
6=1 

which leads to the estimate 
5 

)t > )~'+ 6 ~ ( f~ ) In  5 (3) 
(~=1 

As was pointed out in I, dimers on the sublattices A 0 and B 0 are 
arranged independently, so (12~) can be decoupled into two correlation 
functions. The configuration of dimers on the sublattice A 0 is shown in Fig. 
2a and the corresponding correlation function is denoted by %.  The dotted 
lines in Fig. 2b show five positions of the dimer d on the sublattice B 0 with 
the fixed position of the dimer b. The sum of two-point correlation 
functions over all dotted dimer positions is (%) .  The correlation functions 
( % )  and (~o3) (see Fig. 2c) are related by the simple identity 

( % )  + (o~3) = 1//6 (4) 

following from symmetry of the model. 
We then obtain from (3) and (4) 

X > X '+  (%)(1  - 6(~o3)) ln5 (5) 

and thus we should calculate two correlation functions of the model I (~0t) 
and (0~2>. 

3. CORRELATION FUNCTIONS 

In I we have found a generating function for dimer configurations of 
the model I containing points of one of the sublattices Ao or Bo: 

11/2--112/2--113/2--13( ---7 4~raj ) 
q,(z,,z2,z,) = II II II E 2zj-  2zjcos 

a l = 0  a2=0 a3=0 j = l  " j  

t,/2-1 t2/2-113/2-1 

= 2N/8(ZI + Z2 + Z3) N/8 1"I I-I I I  (1 - Xa ..... ) (6) 
a I =0  a2=0 a3=0 
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where 

3 4~ray 
)ka,a2a3 -~. (Z 1 dr Z2.]. Z3 )-1 ~ Z j c o s - -  

j=l  /j 

are eigenvalues of a "random walk" matrix A. 
Let/3~(~q, #2, #3) be the sum over all t-step paths ending in a lattice 

point with coordinates (/zl,/~2,/~3). If one ascribes a weight wy= 
Zj.2-1(Zz + Z 2 + Z3) -1 to each step in a directionj  ( j  = 1,2,3), then A is 
the matrix of coefficients of the recurrence relation following from Eq. (10) 
of I: 

/~,(~s ~2, ~3) = WI /~t-- ,(~l-  1, ~s ~3) "/r Wl~t - l (~ ,  "Jr 1, ]s ~3) 

+ w 2 ~ t - l ( # , , / ~ 2 -  1,/~3) + w2Bt-l(/~l,/~2 + 1, #3) 

+w3/3,-1(#1,/~z,/~3 - 1) + w3Bt_ , ( Iq , / z  2,/~3 + 1) (7) 

Thus, we have 

eo(Z1,Z2,Z3) = 2u/8(ZI + Z 2 + z3)N/8 de t ( I  -- A) (8) 

where I is the (N/8)  • (N/8)  unit matrix. Denote by i (i = 1 . . . . .  6) all 
possible directions of the path exit from a given point m belonging to the 
sublattice A 0 (B0). Let k dimers in points m l , m  2 . . . . .  m~ be oriented in 
fixed directions il, i 2 . . . . .  i k. The generating function of dimer configura- 
tions co" (Z~, Z 2, Z3) containing the given collection of k dimers is defined 
by the matrix A' = A + 6. A defect matrix 6 should be such that a matrix 
element of A' equals 1 for the transition from the point m, (v = 1, 2 , . . . ,  k) 
in the direction i~ and equals zero for other directions. 

Defining w(i~) by 

j w I i f i ~ = l , 2  

w( i , )=  w 2 i f i ~ = 3 , 4  

w 3 if i~ = 5,6 

we can write ~'(Z1, Z 2, Z3) as 

k 
dP'(Z1,Z2'Z3) -- 2N/8(Z1 + Z2 "1- Z3) N/8 H w(i~)de t ( I  - A - 6)  (9) 

t,=l 

The correlation function defined by 

det(I  - A - 6) 
K =  eo'(Z]'Z2'Z3)o(Z1 ' Z2 ' Z3 ) = ~=II1 w(i , )  det(I  - A) (10) 
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can be written as 
k 

K = I-I w(i~)det(I - A -18) (11) 
t,=l 

where A - 1 is the inverse of A = I - A. 
The A has been diagonalized by the Fourier transform (11) of I. 

Elements of the matrix A - 1 can be found by the inverse transform 

a-1(#1,  #2, #3; #] ,  #2, #3) 

l'/2--112/2--113/2--1 [ 3 2aj(#j--#;) ] ! 
= ~ ~ 3~ e x p - 2 ~ r i ~  (1-- )kala2a3)- (12) 

a =0 a =0 a =0 j = l  /j 

which in the limit N---> oo gives 

a-1(#1 ,  #:, #3 ; #'1, #;) 
2~r 

_ 1 (2 )3 f f fa 'la ':a' 3 0 ] / (3 ) )  
x e x p - i 2 ( # j - # j ) a  j 1 - 2 N w j c o s a  j (13) 

j = l  j = l  

The calculation of the determinant in formula (11) is straightforward, 
because almost all the elements of the matrix are zero. Then formula (11) 
acquires the form 

k 
K =  I-I w ( i , ) d e t ( I -  Q) 

p=l 

where Q is the matrix obtained from 8A-  ] by crossing out rows and 
columns containing only zeros. 

Define the six-component vector A(m', n) for two arbitrary sublattice 
points m and n with coordinates (#1, #2, #3) and 0'1, P2,1'3): 

( 8 ( #  1 -- 1, #2, #3;Vl,P2,  P3),~(#1 -[" 1, #2, #3; /'~l,P2,P3), 

8 (#1 ,  #2 - -  1, #3;Pl ,P2,  b '3) ,~(#l ,  #2-1" 1, #3;/)1,/,~2, b'3) , 

8(#1, #2, # 3 -  1; t 'l,P2,t '3),8(#,, #2, #3 "{- 1;PI,P2't'3)) (14) 

and vector A - l(n, m'): 

(a-I(I"I,P2, P3; #1 -- 1, #2, # 3 ) , a - l ( p l , t ' 2 ,  P3; #1 + 1, #2, #3), 

a - I (p I ,~ '2 ,  P3; #1, #2- -  1, #3 ) , a - l (b ' l ,P2 ,  b'3; #1, #2 -~ 1, #3), 

a - l ( t ' l , t ' 2 ,  P3; #1, #2, #3 -- 1 ) , a - l ( t ' l , P 2 ,  t'3 ; #1, #2, #3 -1- 1)) (15) 
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F o r  a f o u r - p o i n t  c o r r e l a t i o n  f u n c t i o n  K(m],m2,m3,m4) the  m a t r i x  Q be-  
c o m e s  

O = 

A -t(ml, rnl)A(m' ~, ml) 

A -'(m2,m])A(m'l,ml) 
A -](m3,ml)A(m],m~) 
A -~(m4,m])A(m],m]) 

A - l (m , ,  ml)A(ml, m2) 

o , . 

o . . 

�9 . , 

A - I  i t t 
�9 . .  ( m l , m 4 ) A ( m 4 , m 4 )  

A - I  t t �9 . .  (m4,m,)A(m4,m4) 

(16)  

Cros s ing  o u t  the  two  las t  rows  a n d  c o l u m n s  f r o m  (16) we get  the  m a t r i x  Q 
fo r  a t w o - p o i n t  c o r r e l a t i o n  func t i on .  

4. NUMERICAL RESULTS 

Le t  m t, m2, m3, m 4 b e  pos i t i ons  of  the  p o i n t s  1, 2, 3, 4 s h o w n  in F ig .  2a.  
T o  c a l c u l a t e  ( W l )  we p u t  

m 1 = (0, 0, 0), m 2 = (0, 0, 1), m 3 = (0, - 1, 1), m 4 = (0, - 1 ,0)  

F r o m  the  d e f i n i t i o n  (14) i t  fo l lows  t h a t  

A(m' , ,  m , )  = ( - w, ,  - W l ,  - w 2 ,  - w 2 ,  - w 3 ,  ( 1  - w 3 )  } 

A ( m ~ , m 2 )  = ( - -  W l ,  - -  W l ,  (1 - w2), - w2, - w 3 ,  - w 3 )  
(17)  

A(m~,m3)  = {--w],  - W l , - - w 2 , - w 2 , ( 1  - w 3 ) , - w 3 }  

A(m'4,m4) = ((1 --  w,) ,  -- w, ,  - w2, -- w2, -- w3, -- w3} 

T h e  s ca l a r  p r o d u c t  of  A ( m l , m '  ) a n d  A(m],Mt) gives, a c c o r d i n g  to  (12), 

2 ~  

l 

( 2 r  0 

(15), (16), a n d  (17), 

Q l l  - -  

X (ei~3/2 -- j~__ 1, c~ ~j) / ( I/2 -- j~_3 1 v'~ c~ ~j) (18) 

A t  z I = z 2 = z 3 = 1 we  h a v e  w 1 = W 2 = W 3 = 1 / 6  a n d  Ql l  = 0. T h e  m a t r i x  
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element Q12 is given by 
2~r 

1 
f dai da2 da 3 o,2- (2=),ff 

0 

x N / 1/2- 2 (19) 
j= l  j= l  / 

At z 1 = z 2 = z 3 = 1 (19) becomes 

f ff ( 1 +  cos a2) cos a 3 3 da I da2dct 3 ~ 6k I (20) 
Q12 = 7 3 + c o s a  I + c o s a  2 + c o s a  3 

o 

Similarly, we have 

0 1 4  = --  Q I 3  = 0 2 3  = - Q31 = Q34 = - 0 4 2  = Q41 = 6kl 
Q22 = 0 3 3  = Q44 = 0,  Q21 = Q32 = Q43 = 1 

The element 024 is 

f ff ( 1 +  cos al)cosa2 cosa  3 
_ 3 daldaEda33+cosal Q24= ~3 + c o s a 2 + c o s a 3  = 6k 2 (21) 

o 

By using (11), the correlation function ( % )  takes the form 

de[ 1/6 - k  I k~ - k l  II 
- 1/6 1/6 - k  1 k 2 

(~')  = k I - 1/6 1/6 k 1 
- k  I k I - 1/6 1/6 

(22) 

The calculations of integrals (20) and (21) give k 1 = - 0 . 0 3 0 8 7 2 9 . . .  and 
k 2 = 0.0116130 . . . .  Substituting these values into (22) we obtain 

(r  = 0.0012718 . . . 

The configuration % is a fragment of the configuration % and we 
easily find 

( % ) - -  det _ 1/6  1 /6  = 0.0329232 . . .  

Using (4) we obtain ( f ~ l ) =  3 .40189 . . .  • 10 -5. Then from (3) it follows 
that 

X > X' + 0.001642 

The numerical value of the Hammersley bound is X ' =  0.418347. The 
improved lower bound iS 

X > 0 .419989 . . .  
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Here we have evaluated the contribution to )t from the simplest dissections 
generating closed paths on the sublattices. The method suggested allows 
one to take into account the contribution of dissections with a more 
complex closed path though it becomes more difficult to establish the 
independence of contours. 
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